Tidal chain reaction and the origin of replicating biopolymers

Author:

Lathe Richard

Abstract

Template-directed polymer assembly is a likely feature of prebiotic chemistry, but the product blocks further synthesis, preventing amplification and Darwinian selection. Nucleic acids are unusual because charge repulsion between opposing phosphates permits salt-dependent association and dissociation. It was postulated (Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus168, 18–22) that tides at ocean shores provide the driving force for amplification: evaporative concentration promoted association/assembly on drying, while charge repulsion on tidal dilution drove dissociation. This permits exponential amplification by a process termed here the tidal chain reaction (TCR). The process is not strictly contingent upon tidal ebb and flow: circadian dews and rainfalls can produce identical cycling. Ionic strength-dependent association and dissociation of nucleic acids and possible prebiotic precursors are reviewed. Polymer scavenging, chain assembly by the recruitment of pre-formed fragments, is proposed as the primary mechanism of reiterative chain assembly. Parameters determining prebiotic polymer structure and amplification by TCR are discussed, with the suggestion that Darwinian selection may have operated on families of related polymers rather than on individual molecules.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How to Make a Transmembrane Domain at the Origin of Life;Conflicting Models for the Origin of Life;2023-02-17

2. Tidal modulations and the habitability of exoplanetary systems;Monthly Notices of the Royal Astronomical Society;2022-01-03

3. UV Transmission in Natural Waters on Prebiotic Earth;Astrobiology;2021-12-16

4. Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life;Journal of Theoretical Biology;2021-10

5. Extremophiles and Horizontal Gene Transfer: Clues to the Emergence of Life;Extremophiles as Astrobiological Models;2020-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3