Evolutionary Exobiology II: investigating biological potential of synchronously-rotating worlds

Author:

Stevenson David S.

Abstract

AbstractPlanets that orbit M-class dwarf stars in their habitable zones are expected to become tidally-locked in the first billion years of their history. Simulations of potentially habitable planets orbiting K and G-class stars also suggest that many will become tidally-locked or become pseudo-synchronous rotators in a similar time frame where certain criteria are fulfilled. Simple models suggest that such planets will experience climatic regions organized in broadly concentric bands around the sub-stellar point, where irradiation is maximal. Here, we develop some of the quantitative, as well as the qualitative impacts of such climate on the evolutionary potential of life on such worlds, incorporating the effects of topography and ocean currents on potential biological diversity. By comparing atmospheric circulation models with terrestrial circulation and biological diversity, we are able to construct viable thought models of biological potential. While we await the generation of atmospheric circulation models that incorporate topography and varying subaerial landscape, these models can be used as a starting point to determine the overall evolutionary potential of such worlds. The planets in these thought-models have significant differences in their distribution of habitability that may not be apparent from simple climate modelling.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference68 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The bio-habitable zone and atmospheric properties for planets of red dwarfs;International Journal of Astrobiology;2019-11-22

2. Planetary mass, vegetation height and climate;International Journal of Astrobiology;2019-01-07

3. The Niche, Its Hypervolume and the Entropy of Existence;Red Dwarfs;2019

4. A New Hope;Red Dwarfs;2019

5. Niche amplitude, tidal-locking and Fermi's Paradox;International Journal of Astrobiology;2018-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3