Contact inequality: first contact will likely be with an older civilization

Author:

Kipping DavidORCID,Frank Adam,Scharf Caleb

Abstract

AbstractFirst contact with another civilization, or simply another intelligence of some kind, will likely be quite different depending on whether that intelligence is more or less advanced than ourselves. If we assume that the lifetime distribution of intelligences follows an approximately exponential distribution, one might naively assume that the pile-up of short-lived entities dominates any detection or contact scenario. However, it is argued here that the probability of contact is proportional to the age of said intelligence (or possibly stronger), which introduces a selection effect. We demonstrate that detected intelligences will have a mean age twice that of the underlying (detected + undetected) population, using the exponential model. We find that our first contact will most likely be with an older intelligence, provided that the maximum allowed mean lifetime of the intelligence population, τmax, is ≥ e times larger than our own. Older intelligences may be rare but they disproportionately contribute to first contacts, introducing what we call a ‘contact inequality’, analogous to wealth inequality. This reasoning formalizes intuitional arguments and highlights that first contact would likely be one-sided, with ramifications for how we approach SETI.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. Simpson, F. (2016) Apocalypse now? Reviving the Doomsday argument. arXiv e-prints:1611.03072.

2. Benford, G , Benford, J and Benford, D (2008) Searching for cost optimized interstellar beacons. arXiv. e-prints:0810.3966.

3. Implications of the Copernican principle for our future prospects

4. Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus

5. The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3