Why should geological criteria used on Earth not be valid also for Mars? Evidence of possible microbialites and algae in extinct Martian lakes

Author:

Rizzo VincenzoORCID

Abstract

AbstractDuring the Noachian period, 4.1-3.7 Gys ago, the Martian environment was moderately similar to the one on present Earth. Liquid water was widespread in a neutral environment, volcanic activity and heat flow more vigorous, and atmospheric pressure and temperature were higher than today. These conditions may have favoured the spread of life on the surface of Mars. The recognition that different planets and moons share rocky material cast in space by meteoroid impact entails that life creation is not necessary for each single planetary body, but could travel through the Solar system on board of rock fragments. Studies conducted on the past forms of Martian life have already highlighted possible positive matches with microbialite-like structures, referable to the geo-environmental conditions in the Noachian and Hesperian. However, by necessity, these studies are on predominantly micro and meso-scopic scale structures and doubts arise as to their attribution to the biogenic world. We suggest that in the identification of Martian life, we are currently in a position similar to the one of Kalkowsky who in 1908, based solely on morphological and sedimentological arguments, hypothesized the (now accepted) view of the biotic origin of stromatolites. Our analysis of thousands of images from Spirit, Opportunity and Curiosity has provided a selection of images of ring-shaped, domal and coniform macrostructures that resemble terrestrial microbialites such as the ring-shaped stromatolites of Lake Thetis, and stacked cones reminiscent of the group of terrestrial Conophyton. Notably, the latter were detected by Curiosity in the mudstone known as ‘Sheepbed’, the same outcrop where past organic molecules have been detected and where the occurrence of microbial-induced sedimentary structures (MISS) and of many more microbialitic micro, meso and macrostructures has already been hypothesized. Some of the structures discussed in this work are so complex that alternative biological hypotheses can be formulated as possible algae. Alternate, non-abiotic explanations are examined but we find difficult to explain some of such structures in the context of normal sedimentary processes, both syngenetic or epigenetic.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3