The end of life on Earth is not the end of the world: converging to an estimate of life span of the biosphere?

Author:

Mello Fernando de SousaORCID,Friaça Amâncio César Santos

Abstract

AbstractEnvironmental conditions have changed in the past of our planet but were not hostile enough to extinguish life. In the future, an aged Earth and a more luminous Sun may lead to harsh or even uninhabitable conditions for life. In order to estimate the life span of the biosphere we built a minimal model of the co-evolution of the geosphere, atmosphere and biosphere of our planet, taking into account temperature boundaries, CO2 partial pressure lower limits for C3 and C4 plants, and the presence of enough surface water. Our results indicate that the end of the biosphere will happen long before the Sun becomes a red giant, as the biosphere faces increasingly more difficult conditions in the future until its collapse due to high temperatures. The lower limit for CO2 partial pressure for C3 plants will be reached in 170(+ 320, − 110) Myr, followed by the C4 plants limit in 840(+ 270, − 100) Myr. The mean surface temperature will reach 373 K in 1.63(+ 0.14, − 0.05) Gyr, a point that would mark the extinction of the biosphere. Water loss due to internal geophysical processes will not be dramatic, implying almost no variation in the surface ocean mass and ocean depth for the next 1.5 billion years. Our predictions show qualitative convergence and some quantitative agreement with results found in the literature, but there is considerable scattering in the scale of hundreds of millions of years for all the criteria devised. Even considering these uncertainties, the end of the biosphere will hardly happen sooner than 1.5 Gyr.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3