Glittery clouds in exoplanetary atmospheres?

Author:

Helling Ch.,Rietmeijer F.J.M.

Abstract

AbstractCloud formation modelling has entered astrophysics as a new field of research for planetary and brown dwarf atmospheres. Clouds are a chemically and physically very active component of an atmosphere since they determine the remaining gas phase and change the object's albedo depending on their material composition. The grains can also provide a surface where the molecular constituents for life can be physisorbed for possible pre-biotic evolution. This paper summarizes our model for the kinetic formation of dirty dust grains which make up the atmospheric clouds of extraterrestrial giant gas planets. We include seed formation, surface growth and evaporation, the gravitational settling that influences the dust formation, element depletion that determines the remaining gas phase abundances, and convective overshooting that is needed for a dust model to be applicable to hydrostatic atmosphere simulations. We demonstrate the evolution of the material composition of the cloud itself and the distribution of the grain sizes in the cloud layer, exemplary for a giant gas planet parameter combinations (Teff, log g). In general, substellar clouds are composed of small, dirty grains with a high silicate content at the cloud deck. They grow in size and gradually purify to iron/corundum grains when they move into denser and hotter atmospheric regions. Comparing these results with experimental data from condensation experiments leads to the conclusion that cloud grains that gravitationally settle in the atmosphere of a giant planet can easily change their lattice structure from the disordered amorphous state they are forming in, into the ordered lattice of a crystal.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3