A thermodynamic limit constrains complexity and primitive social function

Author:

Gerrish Philip JORCID,Ferreira Claudia P

Abstract

AbstractThe evolutionary trend toward increasing complexity and social function is ultimately the result of natural selection's paradoxical tendency to foster cooperation through competition. Cooperating populations ranging from complex societies to somatic tissue are constantly under attack, however, by non-cooperating mutants or transformants, called ‘cheaters’. Structure in these populations promotes the formation of cooperating clusters whose competitive superiority can alone be sufficient to thwart outgrowths of cheaters and thereby maintain cooperation. But we find that when cheaters appear too frequently – exceeding a threshold mutation or transformation rate – their scattered outgrowths infiltrate and break up cooperating clusters, resulting in a cascading loss of social cohesiveness, a switch to net positive selection for cheaters and ultimately in the loss of cooperation. Our findings imply that a critically low mutation rate had to be achieved (perhaps through the advent of proofreading and repair mechanisms) before complex cooperative functions, such as those required for multicellularity and social behaviour, could have evolved and persisted. When mutation rate in our model is also allowed to evolve, the threshold is crossed spontaneously after thousands of generations, at which point cheaters rapidly invade. Probing extrapolations of these findings suggest: (1) in somatic tissue, it is neither social retro-evolution alone nor mutation rate evolution alone but the interplay between these two that ultimately leads to oncogenic transitions; the rate of this coevolution might thereby provide an indicator of lifespan of species, terrestrial or not; (2) the likelihood that extraterrestrial life can be expected to be multicellular and social should be affected by ultraviolet and other mutagenic factors.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Mutation rate and the maintenance of cooperation: a parsimonious model of somatic evolution and oncogenic transitions;Gerrish;Proceedings of Computational and Mathematical Methods in Science and Engineering,2010

2. A simple rule for the evolution of cooperation on graphs and social networks

3. The genetical evolution of social behaviour. I

4. The Evolution of Cooperation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3