Author:
Fisher Thomson Mason,Schulze-Makuch Dirk
Abstract
AbstractSubglacial ecosystems have recently become of interest within the astrobiological community, as they represent a potentially habitable location in otherwise uninhabitable environments. We used data from Blood Falls, particularly the periodic discharge from the subglacial reservoir beneath Taylor Glacier, Antarctica, to construct an ecosystem model of the putative subglacial microbial community residing there using system dynamics modelling. The model results were, for the most part, within an order of magnitude of the geochemical field data. Productivity was quite low, at 6.4×10−5g carbon l−1yr−1. Based on the results, we draw the following conjectures for the search for life on Mars: A similar ecosystem would require a continual supply of oxidized iron for energy and generate significant amounts of reduced iron as a waste product, be relatively resilient to temporary disturbances, and, thermodynamically, would require at least 0.003 kJ mol l−1of energy to survive at that level of productivity. These results may help to better identify the constraints and boundaries of ecosystems in extreme environments, on Earth and other planetary bodies.
Publisher
Cambridge University Press (CUP)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献