Syntone chemistry and prebiotic stage in life evolution 1. Aziridinone, a key compound in formation of the first proteinogenic amino acids and polypeptides

Author:

Surpateanu Gheorghe

Abstract

AbstractIn this paper is proposed a new theory concerning the formation of the first proteinogenic amino acids and their corresponding polypeptides starting of three syntones: methylene, nitrene and carbon monoxide. First, at low temperature in nitrogen, these three syntones form aziridinone, an asimetric compound in special conditions. Next, by a series of radical chain, izomerization, cyclization, elimination and polymerization reactions, apparently without a well defined transition states are formed a series of precursor syntones. Finally, these more structured syntones at the contract with the components of primary atmosphere, especially with water, ammonia, hydrogen sulphide, even with carbon dioxide and methane offer the first proteinogenic amino acids and their first corresponding polypeptides. As a very important aspect, the aziridinone cycle furnish the backbone of proteinogenic amino acids. The formation of each proteinogenic amino acid moiety also as its participation to construction of polypeptide structures were estimated by two parameters: (1) the complex structural factor, Fe and (2) the participation coefficient, Cp respectively. Dominantly, the quantitative results given in this paper were acquired by structural, thermodynamical and reactivity studies using DGauss with the B88-LYP GGA energy functional with high integral accuracy. Finally, an experimental assembly for obtention of amino acids and polypeptides is proposed. Brief, the three initial syntones: CH2, NH and CO, in nitrogen form aziridinone. That, in reactions with the same three syntones form, the more structured syntone precursors of proteinogenic amino acids and polypeptides. At the contact with primary atmosphere components are formed the first proteinogenic amino acids and polypeptides. The first polypeptides appear from polypeptide precursors and not from proteinogenic amino acids.

Publisher

Cambridge University Press (CUP)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Physics and Astronomy (miscellaneous),Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3