Abstract
ABSTRACT:
Background:
Sensory-motor decoupling at the cortical level involving cholinergic circuitry has also been reported in Parkinson’s Disease (PD). Short-latency afferent inhibition (SAI) is a transcranial magnetic stimulation (TMS) paradigm that has been used previously to probe cortical cholinergic circuits in well-characterised subgroups of patients with PD. In the current study, we compared SAI in a cohort of PD patients at various stages of disease and explored correlations between SAI and various clinical measures of disease severity.
Methods:
The modified Hoehn and Yahr (H&Y) scale was used to stage disease in 22 patients with PD. Motor and cognitive function were assessed using the MDS-UPDRS (Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale) part III and MoCA (Montreal Cognitive Assessment) score, respectively. Objective gait assessment was performed using an electronic walkway (GAITRite®). SAI was measured as the average percentage inhibition of test motor-evoked potentials (MEPs) conditioned by electrical stimulation of the contralateral median nerve at the wrist.
Results:
SAI was significantly reduced in patients with advanced PD (H&Y stage 3) compared to early PD patients (H&Y stage 1) on pairwise comparison. The visuospatial executive function and orientation domains of cognition demonstrated significant negative associations with SAI.
Conclusion:
Cortical sensory-motor integration is progressively diminished as disease progresses. The observation that a reduction in SAI is associated with a reduction in cognitive function possibly reflects the progressive involvement of cortical cholinergic circuits in PD with increasing motor stage. Future longitudinal studies are necessary to confirm this preliminary result.
Publisher
Cambridge University Press (CUP)
Subject
Neurology (clinical),Neurology,General Medicine