Engineering Knowledge Graph for Keyword Discovery in Patent Search

Author:

Sarica Serhad,Song Binyang,Low En,Luo Jianxi

Abstract

AbstractPatent retrieval and analytics have become common tasks in engineering design and innovation. Keyword-based search is the most common method and the core of integrative methods for patent retrieval. Often searchers intuitively choose keywords according to their knowledge on the search interest which may limit the coverage of the retrieval. Although one can identify additional keywords via reading patent texts from prior searches to refine the query terms heuristically, the process is tedious, time-consuming, and prone to human errors. In this paper, we propose a method to automate and augment the heuristic and iterative keyword discovery process. Specifically, we train a semantic engineering knowledge graph on the full patent database using natural language processing and semantic analysis, and use it as the basis to retrieve and rank the keywords contained in the retrieved patents. On this basis, searchers do not need to read patent texts but just select among the recommended keywords to expand their queries. The proposed method improves the completeness of the search keyword set and reduces the human effort for the same task.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference34 articles.

1. Mikolov T. , Chen K. , Corrado G. and Dean J . (2013a), “Efficient Estimation of Word Representations in Vector Space”, Available at: http://arxiv.org/abs/1301.3781 (Accessed: 26 November 2018).

2. Automatic Keyword Extraction from Individual Documents

3. Kuzi S. , Shtok A. and Kurland O . (2016), “Query Expansion Using Word Embeddings”, In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management - CIKM ’16. ACM Press, New York, New York, USA, pp. 1929–1932. https://doi/org/10.1145/2983323.2983876

4. Information retrieval and knowledge discovery utilising a biomedical Semantic Web

5. A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3