Abstract
AbstractIn this paper, we consider a financial or insurance system with a finite number of individual risks described by real-valued random variables. We focus on two kinds of risk measures, referred to as the tail moment (TM) and the tail central moment (TCM), which are defined as the conditional moment and conditional central moment of some individual risk in the event of system crisis. The first-order TM and the second-order TCM coincide with the popular risk measures called the marginal expected shortfall and the tail variance, respectively. We derive asymptotic expressions for the TM and TCM with any positive integer orders, when the individual risks are pairwise asymptotically independent and have distributions from certain classes that contain both light-tailed and heavy-tailed distributions. The formulas obtained possess concise forms unrelated to dependence structures, and hence enable us to estimate the TM and TCM efficiently. To demonstrate the wide application of our results, we revisit some issues related to premium principles and optimal capital allocation from the asymptotic point of view. We also give a numerical study on the relative errors of the asymptotic results obtained, under some specific scenarios when there are two individual risks in the system. The corresponding asymptotic properties of the degenerate univariate versions of the TM and TCM are discussed separately in an appendix at the end of the paper.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献