On asymptotic fairness in voting with greedy sampling

Author:

Gutierrez Abraham,Müller SebastianORCID,Šebek Stjepan

Abstract

AbstractThe basic idea of voting protocols is that nodes query a sample of other nodes and adjust their own opinion throughout several rounds based on the proportion of the sampled opinions. In the classic model, it is assumed that all nodes have the same weight. We study voting protocols for heterogeneous weights with respect to fairness. A voting protocol is fair if the influence on the eventual outcome of a given participant is linear in its weight. Previous work used sampling with replacement to construct a fair voting scheme. However, it was shown that using greedy sampling, i.e., sampling with replacement until a given number of distinct elements is chosen, turns out to be more robust and performant.In this paper, we study fairness of voting protocols with greedy sampling and propose a voting scheme that is asymptotically fair for a broad class of weight distributions. We complement our theoretical findings with numerical results and present several open questions and conjectures.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3