Author:
Bitter Annemarie,Stelzer Robert,Ströh Bennet
Abstract
AbstractWe adapt the classical definition of locally stationary processes in discrete time (see e.g. Dahlhaus, ‘Locally stationary processes’, in Time Series Analysis: Methods and Applications (2012)) to the continuous-time setting and obtain equivalent representations in the time and frequency domains. From this, a unique time-varying spectral density is derived using the Wigner–Ville spectrum. As an example, we investigate time-varying Lévy-driven state space processes, including the class of time-varying Lévy-driven CARMA processes. First, the connection between these two classes of processes is examined. Considering a sequence of time-varying Lévy-driven state space processes, we then give sufficient conditions on the coefficient functions that ensure local stationarity with respect to the given definition.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference47 articles.
1. Time-frequency analysis of locally stationary Hawkes processes
2. Statistical inference for time-varying ARCH processes
3. [5] Benmahammed, K. (1987). Model reduction of uniformly controllable continuous time varying linear systems. In Proc. 1987 American Control Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 1500–1503.
4. Futures pricing in electricity markets based on stable CARMA spot models
5. Matrix Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献