Abstract
AbstractWe investigate expansions for connectedness functions in the random connection model of continuum percolation in powers of the intensity. Precisely, we study the pair-connectedness and the direct-connectedness functions, related to each other via the Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions consist of sums over connected and 2-connected graphs. In the physics literature, this is known to be the case more generally for percolation models based on Gibbs point processes and stands in analogy to the formalism developed for correlation functions in liquid-state statistical mechanics.We find a representation of the direct-connectedness function and bounds on the intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in high dimensions), the results are valid in almost the entire subcritical regime. Moreover, we relate these expansions to the physics literature and we show how they coincide with the expression provided by the lace expansion.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference25 articles.
1. [23] Stell, G. (1976). Correlation functions and their generating functionals: general relations with applications to the theory of fluids. In Phase Transitions and Critical Phenomena, Vol. 5b, Academic Press, London, pp. 205–258.
2. Mean-field critical behaviour for percolation in high dimensions
3. Continuum theory of percolation and association