Alleviating the burden of depression: a simulation study on the impact of mental health services

Author:

Wilhelm M.ORCID,Bauer S.,Feldhege J.,Wolf M.,Moessner M.

Abstract

Abstract Aims Depressive disorders are ranked as the single leading cause of disability worldwide. Despite immense efforts, there is no evidence of a global reduction in the disease burden in recent decades. The aim of the study was to determine the public health impact of the current service system (status quo), to quantify its effects on the depression-related disease burden and to identify the most promising strategies for improving healthcare for depression on the population level. Methods A Markov model was developed to quantify the impact of current services for depression (including prevention, treatment and aftercare interventions) on the total disease burden and to investigate the potential of alternative scenarios (e.g., improved reach or improved treatment effectiveness). Parameter settings were derived from epidemiological information and treatment data from the literature. Based on the model parameters, 10,000,000 individual lives were simulated for each of the models, based on monthly transition rates between dichotomous health states (healthy vs. diseased). Outcome (depression-related disease burden) was operationalized as the proportion of months spent in depression. Results The current healthcare system alleviates about 9.5% (95% confidence interval [CI]: 9.2%–9.7%) of the total disease burden related to depression. Chronic cases cause the majority (83.2%) of depression-related burden. From a public health perspective, improving the reach of services holds the largest potential: Maximum dissemination of prevention (26.9%; CI: 26.7%–27.1%) and treatment (26.5%; CI: 26.3%–26.7%) would result in significant improvements on the population level. Conclusions The results confirm an urgent need for action in healthcare for depression. Extending the reach of services is not only more promising but also probably more achievable than increasing their effectiveness. Currently, the system fails to address the prevention and treatment of chronic cases. The large proportion of the disease burden associated with chronic courses highlights the need for improved treatment policies and clinical strategies for this group (e.g., disease management and adaptive or personalized interventions). The model complements the existing literature by providing a new perspective on the depression-related disease burden and the complex interactions between healthcare services and the lifetime course.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3