Time-resolved flow dynamics and Reynolds number effects at a wall–cylinder junction

Author:

Apsilidis Nikolaos,Diplas Panayiotis,Dancey Clinton L.,Bouratsis Polydefkis

Abstract

This study investigated the physics of separated turbulent flows near the vertical intersection of a flat wall with a cylindrical obstacle. The geometry imposes an adverse pressure gradient on the incoming boundary layer. As a result, flow separates from the wall and reorganizes to a system of characteristic flow patterns known as the horseshoe vortex. We studied the time-averaged and instantaneous behaviour of the turbulent horseshoe vortex using planar time-resolved particle image velocimetry (TRPIV). In particular, we focused on the effect of Reynolds number based on the diameter of the obstacle and the bulk approach velocity, $\mathit{Re}_{D}$. Experiments were carried out at $\mathit{Re}_{D}$: $2.9\times 10^{4}$, $4.7\times 10^{4}$ and $12.3\times 10^{4}$. Data analysis emphasized time-averaged and turbulence quantities, time-resolved flow dynamics and the statistics of coherent flow patterns. It is demonstrated that two large-scale vortical structures dominate the junction flow topology in a time-averaged sense. The number of additional vortices with intermittent presence does not vary substantially with $\mathit{Re}_{D}$. In addition, the increase of turbulence kinetic energy (TKE), momentum and vorticity content of the flow at higher $\mathit{Re}_{D}$ is documented. The distinctive behaviour of the primary horseshoe vortex for the $\mathit{Re}_{D}=12.3\times 10^{4}$ case is manifested by episodes of rapid advection of the vortex to the upstream, higher spatio-temporal variability of its trajectory, and violent eruptions of near-wall fluid. Differences between this experimental run and those at lower Reynolds numbers were also identified with respect to the spatial extents of the bimodal behaviour of the horseshoe vortex, which is a well-known characteristic of turbulent junction flows. Our findings suggest a modified mechanism for the aperiodic switching between the dominant flow modes. Without disregarding the limitations of this work, we argue that Reynolds number effects need to be considered in any effort to control the dynamics of junction flows characterized by the same (or reasonably similar) configurations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Background extraction from double-frame PIV images

2. Boundary layer influence on the unsteady horseshoe vortex flow and surface heat transfer;Sabatino;Trans. ASME: J. Turbomach.,2009

3. Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV);Eckstein;Meas. Sci. Technol.,2009

4. Phase correlation processing for DPIV measurements

5. Numerical and experimental investigation of flow and scour around a circular pile

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3