Tip-vortex instability and turbulent mixing in wind-turbine wakes

Author:

Lignarolo L. E. M.,Ragni D.,Scarano F.,Simão Ferreira C. J.,van Bussel G. J. W.

Abstract

Kinetic-energy transport and turbulence production within the shear layer of a horizontal-axis wind-turbine wake are investigated with respect to their influence on the tip-vortex pairwise instability, the so-called leapfrogging instability. The study quantifies the effect of near-wake instability and tip-vortex breakdown on the process of mean-flow kinetic-energy transport within the far wake of the wind turbine, in turn affecting the wake re-energising process. Experiments are conducted in an open-jet wind tunnel with a wind-turbine model of 60 cm diameter at a diameter-based Reynolds number range $\mathit{Re}_{D}=150\,000{-}230\,000$. The velocity fields in meridian planes encompassing a large portion of the wake past the rotor are measured both in the unconditioned and the phase-locked mode by means of stereoscopic particle image velocimetry. The detailed topology and development of the tip-vortex interactions are discussed prior to a statistical analysis based on the triple decomposition of the turbulent flow fields. The study emphasises the role of the pairing instability as a precursor to the onset of three-dimensional vortex distortion and breakdown, leading to increased turbulent mixing and kinetic-energy transport across the shear layer. Quadrant analysis further elucidates the role of sweep and ejection events within the two identified mixing regimes. Prior to the onset of the instability, vortices shed from the blade appear to inhibit turbulent mixing of the expanding wake. The second region is dominated by the leapfrogging instability, with a sudden increase of the net entrainment of kinetic energy. Downstream of the latter, random turbulent motion characterises the flow, with a significant increase of turbulent kinetic-energy production. In this scenario, the leapfrogging mechanism is recognised as the triggering event that accelerates the onset of efficient turbulent mixing followed by the beginning of the wake re-energising process.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3