Optimal mixing of buoyant jets and plumes in stratified fluids: theory and experiments

Author:

Camassa R.,Lin Z.,McLaughlin R. M.,Mertens K.,Tzou C.,Walsh J.,White B.

Abstract

The influence of ambient fluid stratification on buoyant miscible jets and plumes is studied theoretically and experimentally. Given a fixed set of jet/plume parameters, and an ambient fluid stratification sandwiched between top and bottom homogeneous densities, a theoretical criterion is identified to show how step-like density profiles constitute the most effective mixers within a broad class of stable density transitions. This is assessed both analytically and experimentally, respectively by establishing rigorous a priori estimates on generalized Morton–Taylor–Turner (MTT) models (Morton et al., Proc. R. Soc. Lond. A, vol. 234, 1956, pp. 1–23; Fischer et al., Mixing in Inland and Coastal Waters. Academic, 1979), and by studying a critical phenomenon determined by the distance between the jet/plume release height with respect to the depth of the ambient density transition. For fluid released sufficiently close to the background density transition, the buoyant jet fluid escapes and rises indefinitely. For fluid released at locations lower than a critical depth, the buoyant fluid stops rising and is trapped indefinitely. A mathematical formulation providing rigorous estimates on MTT models is developed along with nonlinear jump conditions and an exact critical-depth formula that is in good quantitative agreement with the experiments. Our mathematical analysis provides rigorous justification for the critical trapping/escaping criteria, first presented in Caulfield & Woods (J. Fluid Mech., vol. 360, 1998, pp. 229–248), within a class of algebraic density decay rates. Further, the step-like background stratification is shown to be the most efficient mixing profile amongst a broad family of stably stratified profiles sharing the same density transition within a fixed distance. Finally, the analysis uncovers surprising differences between the Gaussian and top-hat profile closures concerning initial mixing of the jet and ambient fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3