Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios

Author:

Zhang Qiang,Guo Wenxuan

Abstract

Interfacial fluid mixing driven by an external acceleration or a shock wave are common phenomena known as Rayleigh–Taylor instability and Richtmyer–Meshkov instability, respectively. The most significant feature of these instabilities is the penetrations of heavy (light) fluid into light (heavy) fluid known as spikes (bubbles). The study of the growth rate of these fingers is a classical problem in fundamental science and has important applications. Research on this topic has been very active over the past half-century. In contrast to the well-known phenomena that spikes and bubbles can have quantitatively, even qualitatively, different behaviours, we report a surprising result for fingers in a two-dimensional system: in terms of scaled dimensionless variables, all spikes and bubbles at any density ratio closely follow a universal curve, up through a pre-asymptotic stage. Such universality holds not only among bubbles and among spikes of different density ratios, but also between bubbles and spikes of different density ratios. The data from numerical simulations show good agreement with our theoretical predictions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3