Heat transfer mechanisms of a vapour bubble growing at a wall in saturated upward flow

Author:

Baltis C. H. M.,van der Geld C. W. M.

Abstract

The aim of this study is to provide a better insight into the heat transfer mechanisms involved in single bubble growth in forced convection. In a set-up with vertical upflow of demineralized water under saturation conditions special bubble generators (BGs) were embedded at various positions in the plane wall. Power to a BG, local mean wall temperature and high-speed camera recordings from two viewing angles were measured synchronously. An accurate contour analysis is applied to reconstruct the instantaneous three-dimensional bubble volume. Interface topology changes of a vapour bubble growing at a plane wall have been found to be dictated by the rapid growth and by fluctuations in pressure, velocity and temperature in the approaching fluid flow. The camera images have shown a clear dry spot under the bubbles on the heater surface. A micro-layer under the bubble is experimentally shown to exist when the bubble pins to the wall surface and is therefore dependent on roughness and homogeneity of the wall. The ratio of heat extracted from the wall to the total heat required for evaporation was found to be around 30 % at most and to be independent of the bulk liquid flow rate and heat provided by the wall. When the bulk liquid is locally superheated this ratio was found to decrease to 20 %. Heat transfer to the bubble is also initially controlled by diffusion and is unaffected by the convection of the bulk liquid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3