Author:
Evangelio A.,Campo-Cortés F.,Gordillo J. M.
Abstract
We provide a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. The analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, provides closed expressions for both the bubbling frequencies and the bubble diameters. Different equations are obtained depending on the values of the three dimensionless parameters characterizing this physical situation, namely the Weber and Reynolds numbers and the gas to liquid flow rate ratio. Since both the inertia dominated and viscous dominated bubbling regimes are simply described in terms of the local pressure gradient and the flow rate ratio, the same types of ideas can be applied in the design of bubble makers in which the pressure gradients are controlled in completely different ways.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献