The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport

Author:

Bailey Brian N.,Stoll R.

Abstract

In this paper we used simulation tools to study turbulent boundary-layer structures in the roughness sublayer. Of particular interest is the case of a neutrally-stratified atmospheric boundary layer in which the lower boundary is covered by a homogeneous plant canopy. The goal of this study was to formulate a consistent conceptual model for the creation and evolution of the dominant coherent structures associated with canopy roughness and how they link with features observed in the overlying inertial sublayer. First, coherent structures were examined using temporally developing flow where the full range of turbulent scales had not yet developed, which allowed for instantaneous visualizations. These visualizations were used to formulate a conceptual model, which was then further tested using composite-averaged structure realizations from fully-developed flow with a very large Reynolds number. This study concluded that quasi two-dimensional mixing-layer-like roller structures exist in the developed flow and give the largest contributions to mean Reynolds stresses near the canopy. This work fully acknowledges the presence of highly three-dimensional and localized vortex pairing processes. The primary argument is that, as in a mixing layer, the smaller three-dimensional vortex interactions do not destroy the larger two-dimensional structure. Because the flow has a very large Reynolds number, the roller-like structures are not well-defined vortices but rather are a conglomerate of a large range of smaller-scale vortex structures that create irregularities. Because of this, the larger-scale structure is more difficult to detect in correlation or conditional sampling analyses. The frequently reported ‘scalar microfronts’ and associated spikes in pressure occur in the slip-like region between adjacent rollers. As smaller vortices within roller structures stretch, they evolve to form arch- and hairpin-shaped structures. Blocking by the low-flux canopy creates vertical asymmetry, and tends to impede the vertical progression of head-down structures. Head-up hairpins are allowed to continually stretch upward into the overlying inertial sublayer, where they evolve into the hairpin structures commonly reported to populate wall-bounded flows. This process is thought to be modulated by boundary-layer-scale secondary instability, which enhances head-up hairpin formation along quasi-streamwise transects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3