Dynamic behaviour of buoyant high viscosity droplets rising in a quiescent liquid

Author:

Albert C.,Kromer J.,Robertson A. M.,Bothe D.

Abstract

The present paper initiates a systematic computational analysis of the rise dynamics of high viscosity droplets in a viscous ambient liquid. This represents a relevant intermediate case between free rigid particles and bubbles since their shape adjusts to outer forces while almost no inner circulation is present. As a prototype system, we study corn oil droplets rising in pure water with diameters ranging from 0.5 to 16 mm. Since we are interested in the droplet dynamics from the viewpoint of a bifurcation scenario with increasingly complex droplet behaviour, we perform fully three-dimensional numerical simulations, employing the in-house volume-of-fluid (VOF)-code FS3D. The smallest droplets (0.5–2 mm) rise in steady vertical paths, where for the smallest droplet (0.5 mm) the flow field, as well as the terminal velocity, can be described by the Taylor and Acrivos approximate solution, despite the Reynolds number being well above one. Larger droplets (3.2 mm) rise in an oblique path and display a bifid wake, and those with diameters in the range (3.7–8 mm) rise in intermittently oblique paths, showing an intermittent bifid wake of alternating vorticity. The droplets’ shapes in this range change from spherical into oblate ellipsoids of increasing eccentricity, followed by bi-ellipsoidal shapes with higher curvature on the downstream side. Even larger droplets (10–16 mm) rise in oscillatory, essentially vertical paths with drastically different wake structures, including deadzones and aperiodic or periodic vortex shedding. The largest considered droplets (diameter of 14 and 16 mm) display significant shape oscillations and vortex shedding is accompanied by a complex evolution of coherent vortex structures. Their rise paths are best described as zigzagging, but the bifurcation scenario seems to be substantially different from that leading to the zigzagging of air bubbles. In contrast to the rise behaviour of bubbles, helical paths are not observed in the present study.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference85 articles.

1. Bubble wake visualization by using photochromic dye

2. The terminal rise velocity of 10–100 μm diameter bubbles in water

3. Rieber, M. 2004 Numerische modellierung der dynamik freier grenzflächen in zweiphasenströmungen. PhD thesis, University of Stuttgart.

4. Streamlines and detached wakes in steady flow past a spherical liquid drop;Moremedi;Math. Comput. Appl.,2010

5. Direct numerical simulation of thermocapillary flow based on the Volume of Fluid method

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3