Stratified turbulence forced with columnar dipoles: numerical study

Author:

Augier Pierre,Billant Paul,Chomaz Jean-Marc

Abstract

This paper builds upon the investigation of Augier et al. (Phys. Fluids, vol. 26 (4), 2014) in which a strongly stratified turbulent-like flow was forced by 12 generators of vertical columnar dipoles. In experiments, measurements start to provide evidence of the existence of a strongly stratified inertial range that has been predicted for large turbulent buoyancy Reynolds numbers $\mathscr{R}_{t}={\it\varepsilon}_{\!K}/({\it\nu}N^{2})$, where ${\it\varepsilon}_{\!K}$ is the mean dissipation rate of kinetic energy, ${\it\nu}$ the viscosity and $N$ the Brunt–Väisälä frequency. However, because of experimental constraints, the buoyancy Reynolds number could not be increased to sufficiently large values so that the inertial strongly stratified turbulent range is only incipient. In order to extend the experimental results toward higher buoyancy Reynolds number, we have performed numerical simulations of forced stratified flows. To reproduce the experimental vortex generators, columnar dipoles are periodically produced in spatial space using impulsive horizontal body force at the peripheries of the computational domain. For moderate buoyancy Reynolds number, these numerical simulations are able to reproduce the results obtained in the experiments, validating this particular forcing. For higher buoyancy Reynolds number, the simulations show that the flow becomes turbulent as observed in Brethouwer et al. (J. Fluid Mech., vol. 585, 2007, pp. 343–368). However, the statistically stationary flow is horizontally inhomogeneous because the dipoles are destabilized quite rapidly after their generation. In order to produce horizontally homogeneous turbulence, high-resolution simulations at high buoyancy Reynolds number have been carried out with a slightly modified forcing in which dipoles are forced at random locations in the computational domain. The unidimensional horizontal spectra of kinetic and potential energies scale like $C_{1}{\it\varepsilon}_{\!K}^{2/3}k_{h}^{-5/3}$ and $C_{2}{\it\varepsilon}_{\!K}^{2/3}k_{h}^{-5/3}({\it\varepsilon}_{\!P}/{\it\varepsilon}_{\!K})$, respectively, with $C_{1}=C_{2}\simeq 0.5$ as obtained by Lindborg (J. Fluid Mech., vol. 550, 2006, pp. 207–242). However, there is a depletion in the horizontal kinetic energy spectrum for scales between the integral length scale and the buoyancy length scale and an anomalous energy excess around the buoyancy length scale probably due to direct transfers from large horizontal scale to small scales resulting from the shear and gravitational instabilities. The horizontal buoyancy flux co-spectrum increases abruptly at the buoyancy scale corroborating the presence of overturnings. Remarkably, the vertical kinetic energy spectrum exhibits a transition at the Ozmidov length scale from a steep spectrum scaling like $N^{2}k_{z}^{-3}$ at large scales to a spectrum scaling like $C_{K}{\it\varepsilon}_{\!K}^{2/3}k_{z}^{-5/3}$, with $C_{K}=1$, the classical Kolmogorov constant.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3