Turbulent pair dispersion as a ballistic cascade phenomenology

Author:

Bourgoin Mickaël

Abstract

Since the pioneering work of Richardson in 1926, later refined by Batchelor and Obukhov in 1950, it is predicted that the rate of separation of pairs of fluid elements in turbulent flows with initial separation at inertial scales, grows ballistically first (Batchelor regime), before undergoing a transition towards a super-diffusive regime where the mean-square separation grows as $t^{3}$ (Richardson regime). Richardson empirically interpreted this super-diffusive regime in terms of a non-Fickian process with a scale-dependent diffusion coefficient (the celebrated Richardson’s ‘$4/3$rd’ law). However, the actual physical mechanism at the origin of such a scale dependent diffusion coefficient remains unclear. The present article proposes a simple physical phenomenology for the time evolution of the mean-square relative separation in turbulent flows, based on a scale-dependent ballistic scenario rather than a scale-dependent diffusive. It is shown that this phenomenology accurately retrieves most of the known features of relative dispersion for particles mean-square separation, among others: (i) it is quantitatively consistent with most recent numerical simulations and experiments for mean-square separation between particles (both for the short-term Batchelor regime and the long-term Richardson regime, and for all initial separations at inertial scales); (ii) it gives a simple physical explanation of the origin of the super-diffusive $t^{3}$ Richardson regime which naturally builds itself as an iterative process of elementary short-term scale-dependent ballistic steps; (iii) it shows that the Richardson constant is directly related to the Kolmogorov constant (and eventually to a ballistic persistence parameter); and (iv) in a further extension of the phenomenology, taking into account third-order corrections, it robustly describes the temporal asymmetry between forward and backward dispersion, with an explicit connection to the cascade of energy flux across scales. An important aspect of this phenomenology is that it simply and robustly connects long-term super-diffusive features to elementary short-term mechanisms, and at the same time it connects basic Lagrangian features of turbulent relative dispersion (both at short and long times) to basic Eulerian features of the turbulent field: second-order Eulerian statistics control the growth of separation (both at short and long times) while third-order Eulerian statistics control the temporal asymmetry of the dispersion process, which can then be directly identified as the signature of the energy cascade and associated to well-known exact results as the Karman–Howarth–Monin relation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3