Author:
Babler Matthaus U.,Biferale Luca,Brandt Luca,Feudel Ulrike,Guseva Ksenia,Lanotte Alessandra S.,Marchioli Cristian,Picano Francesco,Sardina Gaetano,Soldati Alfredo,Toschi Federico
Abstract
AbstractBreakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress ${\it\sigma}\sim {\it\varepsilon}^{1/2}$, with ${\it\varepsilon}$ being the energy dissipation at the position of the aggregate, overcomes a given threshold ${\it\sigma}_{cr}$, which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献