Laminar–turbulent transition and wave–turbulence interaction in stratified horizontal two-phase pipe flow

Author:

Birvalski M.,Tummers M. J.,Delfos R.,Henkes R. A. W. M.

Abstract

Stratified cocurrent flow of air and water was studied experimentally in a 5 cm diameter horizontal pipe. The velocity in the liquid phase was measured using planar particle image velocimetry, and the instantaneous interfacial profile was recorded using a separate camera. The resulting velocity fields extended from the pipe wall to the wavy interface. The principal aims of the study were to investigate the laminar–turbulent transition of the liquid phase in stratified gas–liquid flow, and to explore the interaction between the transition process and the interfacial waves. The boundaries of transition were determined in both the smooth and the wavy region. The occurrence of waves had the effect of increasing the Reynolds numbers at the end of transition. On the other hand, the transition to turbulence caused a change from the ‘2D small-amplitude’ to the ‘3D small-amplitude’ wave pattern, which were seen to correspond to the capillary–gravity and gravity–capillary solutions of the dispersion relationship respectively. In light of this, the flowmap of the wavy region was recast into Weber number–Froude number coordinates, which provided a physical interpretation of the interaction between the developing turbulence and the changing wave patterns.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference29 articles.

1. The period-doubling of gravity–capillary waves

2. On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug

3. Espedal, M. 1998 An experimental investigation of stratified two-phase pipe flow at small inclinations. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway.

4. Determination of flow sub-regimes in stratified air–water channel flow using LDV spectra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3