Author:
van Reeuwijk Maarten,Craske John
Abstract
We discuss energetic restrictions on the entrainment coefficient${\it\alpha}$for axisymmetric jets and plumes. The resulting entrainment relation includes contributions from the mean flow, turbulence and pressure, fundamentally linking${\it\alpha}$to the production of turbulence kinetic energy, the plume Richardson number$\mathit{Ri}$and the profile coefficients associated with the shape of the buoyancy and velocity profiles. This entrainment relation generalises the work by Kaminskiet al. (J. Fluid Mech., vol. 526, 2005, pp. 361–376) and Fox (J. Geophys. Res., vol. 75, 1970, pp. 6818–6835). The energetic viewpoint provides a unified framework with which to analyse the classical entrainment models implied by the plume theories of Mortonet al.(Proc. R. Soc. Lond.A, vol. 234, 1955, pp. 1–23) and Priestley & Ball (Q. J. R. Meteorol. Soc., vol. 81, 1954, pp. 144–157). Data for pure jets and plumes in unstratified environments indicate that to first order the physics is captured by the Priestley and Ball entrainment model, implying that (1) the profile coefficient associated with the production of turbulence kinetic energy has approximately the same value for pure plumes and jets, (2) the value of${\it\alpha}$for a pure plume is roughly a factor of$5/3$larger than for a jet and (3) the enhanced entrainment coefficient in plumes is primarily associated with the behaviour of the mean flow and not with buoyancy-enhanced turbulence. Theoretical suggestions are made on how entrainment can be systematically studied by creating constant-$\mathit{Ri}$flows in a numerical simulation or laboratory experiment.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献