Lift and drag in two-dimensional steady viscous and compressible flow

Author:

Liu L. Q.,Zhu J. Y.,Wu J. Z.

Abstract

This paper studies the lift and drag experienced by a body in a two-dimensional, viscous, compressible and steady flow. By a rigorous linear far-field theory and the Helmholtz decomposition of the velocity field, we prove that the classic lift formula $L=-{\it\rho}_{0}U{\it\Gamma}_{{\it\phi}}$, originally derived by Joukowski in 1906 for inviscid potential flow, and the drag formula $D={\it\rho}_{0}UQ_{{\it\psi}}$, derived for incompressible viscous flow by Filon in 1926, are universally true for the whole field of viscous compressible flow in a wide range of Mach number, from subsonic to supersonic flows. Here, ${\it\Gamma}_{{\it\phi}}$ and $Q_{{\it\psi}}$ denote the circulation of the longitudinal velocity component and the inflow of the transverse velocity component, respectively. We call this result the Joukowski–Filon theorem (J–F theorem for short). Thus, the steady lift and drag are always exactly determined by the values of ${\it\Gamma}_{{\it\phi}}$ and $Q_{{\it\psi}}$, no matter how complicated the near-field viscous flow surrounding the body might be. However, velocity potentials are not directly observable either experimentally or computationally, and hence neither are the J–F formulae. Thus, a testable version of the J–F formulae is also derived, which holds only in the linear far field. Due to their linear dependence on the vorticity, these formulae are also valid for statistically stationary flow, including time-averaged turbulent flow. Thus, a careful RANS (Reynolds-averaged Navier–Stokes) simulation is performed to examine the testable version of the J–F formulae for a typical airfoil flow with Reynolds number $Re=6.5\times 10^{6}$ and free Mach number $M\in [0.1,2.0]$. The results strongly support and enrich the J–F theorem. The computed Mach-number dependence of $L$ and $D$ and its underlying physics, as well as the physical implications of the theorem, are also addressed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Some recent developments in airfoil theory;Sears;AIAA J.,1986

2. Mao, F. 2011 Multi-process theory of compressible flow. Doctor thesis, Peking University (in Chinese).

3. The forces on a cylinder in a stream of viscous fluid

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3