Turbulent Rayleigh–Bénard convection described by projected dynamics in phase space

Author:

Lülff Johannes,Wilczek Michael,Stevens Richard J. A. M.,Friedrich Rudolf,Lohse Detlef

Abstract

Rayleigh–Bénard convection, i.e. the flow of a fluid between two parallel plates that is driven by a temperature gradient, is an idealised set-up to study thermal convection. Of special interest are the statistics of the turbulent temperature field, which we are investigating and comparing for three different geometries, namely convection with periodic horizontal boundary conditions in three and two dimensions as well as convection in a cylindrical vessel, in order to determine the similarities and differences. To this end, we derive an exact evolution equation for the temperature probability density function. Unclosed terms are expressed as conditional averages of velocities and heat diffusion, which are estimated from direct numerical simulations. This framework lets us identify the average behaviour of a fluid particle by revealing the mean evolution of a fluid with different temperatures in different parts of the convection cell. We connect the statistics to the dynamics of Rayleigh–Bénard convection, giving deeper insights into the temperature statistics and transport mechanisms. We find that the average behaviour is described by closed cycles in phase space that reconstruct the typical Rayleigh–Bénard cycle of fluid heating up at the bottom, rising up to the top plate, cooling down and falling again. The detailed behaviour shows subtle differences between the three cases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3