A grid-independent length scale for large-eddy simulations

Author:

Piomelli Ugo,Rouhi Amirreza,Geurts Bernard J.

Abstract

AbstractWe propose a new length scale as a basis for the modelling of subfilter motions in large-eddy simulations (LES) of turbulent flow. Rather than associating the model length scale with the computational grid, we put forward an approximation of the integral length scale to achieve a non-uniform flow coarsening through spatial filtering that reflects the local, instantaneous turbulence activity. Through the introduction of this grid-independent, solution-specific length scale it becomes possible to separate the problem of representing small-scale turbulent motions in a coarsened flow model from that of achieving an accurate numerical resolution of the primary flow scales. The formulation supports the notion of grid-independent LES, in which a prespecified reliability measure is used. We investigate a length-scale definition based on the resolved turbulent kinetic energy (TKE) and its dissipation. The proposed approach, which we call integral length-scale approximation (ILSA) model, is illustrated for turbulent channel flow at high Reynolds numbers and for homogeneous isotropic turbulence (HIT). We employ computational optimization of the model parameter based on various measures of subfilter activity, using the successive inverse polynomial interpolation (SIPI) and establish the efficiency of this route to subfilter modelling.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3