On the selection of viscosity to suppress the Saffman–Taylor instability in a radially spreading annulus

Author:

Beeson-Jones Tim H.,Woods Andrew W.

Abstract

We examine the stability of a system with two radially spreading fronts in a Hele-Shaw cell in which the viscosity increases monotonically from the innermost to the outermost fluid. The critical parameters are identified as the viscosity ratio of the inner and outer fluids and the viscosity difference between the intermediate and outer fluids as a fraction of the viscosity difference between the inner and outer fluids. There is a minimum viscosity ratio of the inner and outer fluids above which, for each azimuthal mode, the system is stable to perturbations of that mode at any flow rate. This condition is directly analogous to the result for a single interface. Below this minimum ratio, the system may be stable at any flow rate early in the flow. However, once the inner radius reaches a critical fraction of the outer radius, this absolute stability ceases to apply owing to the coupling of the inner and outer interfaces. We determine the maximum flow rate, as a function of time, in order that all modes remain stable due to the effects of interfacial tension. These criteria for stability are then used to select the viscosity of the intermediate fluid so that a fixed volume of the intermediate and then inner fluid can be added to the system in the minimum time with the system remaining stable throughout. The optimal viscosity for this intermediate fluid depends on the relative volume of the inner and intermediate fluid and also on the overall viscosity ratio of the innermost fluid and the original fluid in the cell, with the balance being to suppress the early time instability of the outer interface and the late time instability of the inner interface. We discuss application of this approach to a problem of injection of treatment fluid in an oil well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3