Flutter instability of a thin flexible plate in a channel

Author:

Shoele Kourosh,Mittal Rajat

Abstract

The stability of a thin flexible plate confined inside an inviscid two-dimensional channel is examined using a nonlinear eigenvalue analysis method. A new Green’s function for the vortex wake of the flexible plate inside the channel, as well as its rapidly convergent series approximation, is proposed. Comparison with a fully coupled Navier–Stokes fluid–structure interaction model indicates that the current inviscid model successfully predicts the flutter boundary for a confined flexible plate. The analysis also shows that confinement has a destabilizing effect on heavy plates. Furthermore, as the confinement is increased, the oscillating frequency of the plate increases and new peaks appear in its stability curve. Asymmetric placement of the plate within the channel, especially when the plate is very close to one wall, also modifies the stability curve of the system by shifting the mode transition points toward smaller fluid-to-plate inertia ratios. Our study suggests that the degree of confinement and asymmetric placement of the plate in the channel could be used to alter the flutter instability of the plate, and to adjust the frequency of flutter.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3