The near-wall region of highly turbulent Taylor–Couette flow

Author:

Ostilla-Mónico Rodolfo,Verzicco Roberto,Grossmann Siegfried,Lohse Detlef

Abstract

Direct numerical simulations of the Taylor–Couette (TC) problem, the flow between two coaxial and independently rotating cylinders, have been performed. The study focuses on TC flow with mild curvature (small gap) with a radius ratio of ${\it\eta}=r_{i}/r_{o}=0.909$, an aspect ratio of ${\it\Gamma}=L/d=2{\rm\pi}/3$, and a stationary outer cylinder. Three inner cylinder Reynolds numbers of $1\times 10^{5}$, $2\times 10^{5}$ and $3\times 10^{5}$ were simulated, corresponding to frictional Reynolds numbers between $Re_{{\it\tau}}\approx 1400$ and $Re_{{\it\tau}}\approx 4000$. An additional case with a large gap, ${\it\eta}=0.5$ and driving of $Re=2\times 10^{5}$ was also investigated. Small-gap TC was found to be dominated by spatially fixed large-scale structures, known as Taylor rolls (TRs). TRs are attached to the boundary layer, and are active, i.e. they transport angular velocity through Reynolds stresses. An additional simulation was also conducted with inner cylinder Reynolds number of $Re=1\times 10^{5}$ and fixed outer cylinder with an externally imposed axial flow of comparable strength to the wind of the TRs. The axial flow was found to convect the TRs without any weakening effect. For small-gap TC flow, evidence was found for the existence of logarithmic velocity fluctuations, and of an overlap layer, in which the velocity fluctuations collapse in outer units. Profiles consistent with a logarithmic dependence were also found for the angular velocity in large-gap TC flow, albeit in a very reduced range of scales. Finally, the behaviour of both small- and large-gap TC flow was compared to other canonical flows. Small-gap TC flow has similar behaviour in the near-wall region to other canonical flows, while large-gap TC flow displays very different behaviour.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference64 articles.

1. van der Veen, R. C. A. , Huisman, S. , Merbold, S. , Harlander, U. , Egbers, C. , Lohse, D.  & Sun, C. 2015 Taylor–Couette turbulence at radius ratio ${\it\eta}=0.5$ : scaling, flow structures and plumes (under review), arXiv:1508.05802.

2. A theoretical and experimental study of wall turbulence

3. Ultimate Turbulent Taylor-Couette Flow

4. Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Spatial Correlation Identification Model for Coherent Structure Extraction and Three-Dimensional Visualization;Journal of Marine Science and Engineering;2024-03-14

2. Basic Properties of Turbulent Flows;Navier-Stokes Turbulence;2024

3. Wall-Bounded Turbulent Flows;Navier-Stokes Turbulence;2024

4. Introduction;Navier-Stokes Turbulence;2024

5. Controlling secondary flows in Taylor–Couette flow using axially spaced superhydrophobic surfaces;Journal of Fluid Mechanics;2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3