Large eddy simulations of stratified turbulence: the dynamic Smagorinsky model

Author:

Khani Sina,Waite Michael L.

Abstract

The dynamic Smagorinsky model for large eddy simulation (LES) of stratified turbulence is studied in this paper. A maximum grid spacing criterion of ${\it\Delta}/L_{b}<0.24$ is found in order to capture several of the key characteristics of stratified turbulence, where ${\it\Delta}$ is the filter scale and $L_{b}$ is the buoyancy scale. These results show that the dynamic Smagorinsky model needs a grid spacing approximately twice as large as the regular Smagorinsky model to reproduce similar results. This improvement on the regular Smagorinsky eddy viscosity approach increases the accuracy of results at small resolved scales while decreasing the computational costs because it allows larger ${\it\Delta}$. In addition, the eddy dissipation spectra in LES of stratified turbulence present anisotropic features, taking energy out of large horizontal but small vertical scales. This trend is not seen in the non-stratified cases, where the subgrid-scale energy transfer is isotropic. Statistics of the dynamic Smagorinsky coefficient $c_{s}$ are investigated; its distribution is peaked around zero, and its standard deviations decrease slightly with increasing stratification. In line with previous findings for unstratified turbulence, regions of increased shear favour smaller $c_{s}$ values; in stratified turbulence, the spatial distribution of the shear, and hence $c_{s}$, is dominated by a layerwise pancake structure. These results show that the dynamic Smagorinsky model presents a promising approach for LES when isotropic buoyancy-scale resolving grids are employed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3