Poiseuille and Couette flows in the transitional and fully turbulent regime

Author:

Orlandi Paolo,Bernardini Matteo,Pirozzoli Sergio

Abstract

We present an extensive compilation of direct numerical simulation (DNS) data for Poiseuille and Couette flows, from the laminar into the fully turbulent regime, with the goal of highlighting similarities and differences. The data suggest that, for a given bulk velocity, Couette flow yields less resistance than Poiseuille flow and greater turbulence kinetic energy, which may be beneficial for more efficient diffusion, thus suggesting the effectiveness of fluid transport devices based on moving belts as opposed to classical ducts. Both flows exhibit similar trends for the wall-parallel velocity variances, which increase logarithmically with the Reynolds number. The shear stress and the wall-normal stress tend to saturate faster in Couette flow, which can thus be regarded as a limit to which Poiseuille flow tends, in the limit of high Reynolds number. Excess production over dissipation is found in the outer part of Poiseuille and Couette flow, which is responsible for non-local transfer of energy. However, the structure of the core flow seems to attain an asymptotic state which consists of a parabolic and linear mean velocity profile, respectively, and it seems unlikely that substantial changes to this scenario will occur at Reynolds numbers reachable by DNS in the foreseeable future.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3