Landslide tsunamis in lakes

Author:

Couston Louis-Alexandre,Mei Chiang C.,Alam Mohammad-Reza

Abstract

Landslides plunging into lakes and reservoirs can result in extreme wave runup at the shores. This phenomenon has claimed lives and caused damage to near-shore properties. Landslide tsunamis in lakes are different from typical earthquake tsunamis in the open ocean in that (i) the affected areas are usually within the near field of the source, (ii) the highest runup occurs within the time period of the geophysical event, and (iii) the enclosed geometry of a lake does not let the tsunami energy escape. To address the problem of transient landslide tsunami runup and to predict the resulting inundation, we utilize a nonlinear model equation in the Lagrangian frame of reference. The motivation for using such a scheme lies in the fact that the runup on an inclined boundary is directly and readily computed in the Lagrangian framework without the need to resort to approximations. In this work, we investigate the inundation patterns due to landslide tsunamis in a lake. We show by numerical computations that Airy’s approximation of an irrotational theory using Lagrangian coordinates can legitimately predict runup of large amplitude. We also demonstrate that in a lake of finite size the highest runup may be magnified by constructive interference between edge waves that are trapped along the shore and multiple reflections of outgoing waves from opposite shores, and may occur somewhat after the first inundation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3