Author:
Meyrand R.,Kiyani K. H.,Galtier S.
Abstract
Three-dimensional numerical simulation is used to investigate intermittency in incompressible weak magnetohydrodynamic turbulence with a strong uniform magnetic field $\boldsymbol{b}_{\mathbf{0}}$ and zero cross-helicity. At leading order, this asymptotic regime is achieved via three-wave resonant interactions with the scattering of a wave on a 2D mode for which $k_{\Vert }=0$. When the interactions with the 2D modes are artificially reduced, we show numerically that the system exhibits an energy spectrum with $k_{\bot }^{-3/2}$, whereas the expected exact solution with $k_{\bot }^{-2}$ is recovered with the full nonlinear system. In the latter case, strong intermittency is found when the vector separation of structure functions is taken transverse to $\boldsymbol{b}_{\mathbf{0}}$. This result may be explained by the influence of the 2D modes whose regime belongs to strong turbulence. In addition to shedding light on the origin of this intermittency, we derive a log-Poisson law, ${\it\zeta}_{p}=p/8+1-(1/4)^{p/2}$, which fits the data perfectly and highlights the important role of parallel current sheets.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献