Wentzel–Kramers–Brillouin approximation for atmospheric waves

Author:

Godin Oleg A.

Abstract

Ray and Wentzel–Kramers–Brillouin (WKB) approximations have long been important tools in understanding and modelling propagation of atmospheric waves. However, contradictory claims regarding the applicability and uniqueness of the WKB approximation persist in the literature. Here, we consider linear acoustic–gravity waves (AGWs) in a layered atmosphere with horizontal winds. A self-consistent version of the WKB approximation is systematically derived from first principles and compared to ad hoc approximations proposed earlier. The parameters of the problem are identified that need to be small to ensure the validity of the WKB approximation. Properties of low-order WKB approximations are discussed in some detail. Contrary to the better-studied cases of acoustic waves and internal gravity waves in the Boussinesq approximation, the WKB solution contains the geometric, or Berry, phase. The Berry phase is generally non-negligible for AGWs in a moving atmosphere. In other words, knowledge of the AGW dispersion relation is not sufficient for calculation of the wave phase.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atmospheric Wave Radiation by Vibrations of an Ice Shelf;Journal of Geophysical Research: Atmospheres;2023-11-10

2. Nonlinear shallow water investigation of atmospheric disturbances generated by strong seismic events;Physical Review E;2023-09-14

3. Approximation of Vertical Short Waves of Small Amplitude in the Atmosphere Taking into Account the Average Wind;Izvestiya, Atmospheric and Oceanic Physics;2023-02

4. Approximation of Small Amplitude Waves Short in Vertical in the Atmosphere Taking Into Account the Average Wind;Известия Российской академии наук. Физика атмосферы и океана;2023-01-01

5. A mathematical model of lithosphere–atmosphere coupling for seismic events;Scientific Reports;2021-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3