Localized turbulence structures in transitional rectangular-duct flow

Author:

Takeishi Keisuke,Kawahara Genta,Wakabayashi Hiroki,Uhlmann Markus,Pinelli Alfredo

Abstract

Direct numerical simulations of transitional flow in a rectangular duct of cross-sectional aspect ratio $A\equiv s/h=1$–9 ($s$ and $h$ being the duct half-span and half-height, respectively) have been performed in the Reynolds number range $\mathit{Re}\equiv u_{b}h/{\it\nu}=650$–1500 ($u_{b}$ and ${\it\nu}$ being the bulk velocity and the kinematic viscosity, respectively) in order to investigate the dependence on the aspect ratio of spatially localized turbulence structures. It was observed that the lowest Reynolds number $\mathit{Re}_{T}$, estimated in a specific way, for localized (transiently sustaining) turbulence decreases monotonically from $\mathit{Re}_{T}=730$ for $A=1$ (square duct) with increasing aspect ratio, and for $A=5$ it nearly attains a minimal value $\mathit{Re}_{T}\approx 670$ that is consistent with the onset Reynolds number of turbulent spots in a plane channel ($A=\infty$). Turbulent states consist of localized structures that undergo a fundamental change around $A=4$. At $\mathit{Re}=\mathit{Re}_{T}$ turbulence for $A=1$$3$ is streamwise-localized similar to turbulent puffs in pipe flow, while for $A=5$–9 turbulence at $\mathit{Re}=\mathit{Re}_{T}$ is also localized in the spanwise direction, similar to turbulent spots in plane channel flow. This structural change in turbulent states at $\mathit{Re}=\mathit{Re}_{T}$ is attributed to the exclusion of turbulence from the vicinity of the duct sidewalls in the case of a wide duct with $A\gtrsim 4$: here the friction length on the sidewalls is so long that the size (around 100 times the friction length) of a self-sustaining minimal flow unit of streamwise vortices and streaks is larger than the duct height and, therefore, it cannot be accommodated.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3