Particle-size and -density segregation in granular free-surface flows

Author:

Gray J. M. N. T.,Ancey C.

Abstract

When a mixture of particles, which differ in both their size and their density, avalanches downslope, the grains can either segregate into layers or remain mixed, dependent on the balance between particle-size and particle-density segregation. In this paper, binary mixture theory is used to generalize models for particle-size segregation to include density differences between the grains. This adds considerable complexity to the theory, since the bulk velocity is compressible and does not uncouple from the evolving concentration fields. For prescribed lateral velocities, a parabolic equation for the segregation is derived which automatically accounts for bulk compressibility. It is similar to theories for particle-size segregation, but has modified segregation and diffusion rates. For zero diffusion, the theory reduces to a quasilinear first-order hyperbolic equation that admits solutions with discontinuous shocks, expansion fans and one-sided semi-shocks. The distance for complete segregation is investigated for different inflow concentrations, particle-size segregation rates and particle-density ratios. There is a significant region of parameter space where the grains do not separate completely, but remain partially mixed at the critical concentration at which size and density segregation are in exact balance. Within this region, a particle may rise or fall dependent on the overall composition. Outside this region of parameter space, either size segregation or density segregation dominates and particles rise or fall dependent on which physical mechanism has the upper hand. Two-dimensional steady-state solutions that include particle diffusion are computed numerically using a standard Galerkin solver. These simulations show that it is possible to define a Péclet number for segregation that accounts for both size and density differences between the grains. When this Péclet number exceeds 10 the simple hyperbolic solutions provide a very useful approximation for the segregation distance and the height of rapid concentration changes in the full diffusive solution. Exact one-dimensional solutions with diffusion are derived for the steady-state far-field concentration.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference68 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3