Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms

Author:

Kœnig Maxime,Sasaki Kenzo,Cavalieri André V. G.,Jordan Peter,Gervais Yves

Abstract

We present a study of the turbulent and acoustic fields of subsonic jets, controlled by means of a novel actuator that introduces perturbations via steady-fluidic actuation from a rotating centrebody. The actuation can produce louder or quieter jets, and these are analysed using time-resolved stereoscopic particle image velocimetry and a hot-wire anemometer. We place the analysis in the framework of wavepackets and linear stability theory, whence we show, using solutions of the linear parabolised stability equations, that the quieter flows can be understood to result from a mean-flow deformation that modifies wavepacket dynamics, and in particular their phase velocities, which are significantly reduced. The mean-flow deformation is shown, by a triple decomposition, to be due to the generation of Reynolds stresses associated with incoherent turbulence (rather than coherent structures) which arises when the actuation energises the flow with a frequency–azimuthal wavenumber (${\it\omega}$$m$) combination to which the mean flow is stable. When the actuation excites the flow with an ${\it\omega}$$m$ combination to which the mean flow is unstable, the response is dominated by coherent structures, whose rapid growth takes them beyond the linear limit, where they undergo quadratic wave interactions and lead, consequently, to a louder flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3