Double-diffusive instability in core–annular pipe flow

Author:

Sahu Kirti Chandra

Abstract

The instability in a pressure-driven core–annular flow of two miscible fluids having the same densities, but different viscosities, in the presence of two scalars diffusing at different rates (double-diffusive effect) is investigated via linear stability analysis and axisymmetric direct numerical simulation. It is found that the double-diffusive flow in a cylindrical pipe exhibits strikingly different stability characteristics compared to the double-diffusive flow in a planar channel and the equivalent single-component flow (wherein viscosity stratification is achieved due to the variation of one scalar) in a cylindrical pipe. The flow which is stable in the context of single-component systems now becomes unstable in the presence of two scalars diffusing at different rates. It is shown that increasing the diffusivity ratio enhances the instability. In contrast to the single fluid flow through a pipe (the Hagen–Poiseuille flow), the faster growing axisymmetric eigenmode is found to be more unstable than the corresponding corkscrew mode for the parameter values considered, for which the equivalent single-component flow is stable to both the axisymmetric and corkscrew modes. Unlike single-component flows of two miscible fluids in a cylindrical pipe, it is shown that the diffusivity and the radial location of the mixed layer have non-monotonic influences on the instability characteristics. An attempt is made to understand the underlying mechanism of this instability by conducting the energy budget and inviscid stability analyses. The investigation of linear instability due to the double-diffusive phenomenon is extended to the nonlinear regime via axisymmetric direct numerical simulations. It is found that in the nonlinear regime the flow becomes unstable in the presence of double-diffusive effect, which is consistent with the predictions of linear stability theory. A new type of instability pattern of an elliptical shape is observed in the nonlinear simulations in the presence of double-diffusive effect.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3