Vorticity reconnection during vortex cutting by a blade

Author:

Saunders D. Curtis,Marshall Jeffrey S.

Abstract

A computational study of vorticity reconnection, associated with the breaking and reconnection of vortex lines, during vortex cutting by a blade is reported. A series of Navier–Stokes simulations of vortex cutting with different values of the vortex strength are described, and the different phases in the vortex cutting process are compared to those of the more traditional vortex tube reconnection process. Each of the three phases of vortex tube reconnection described by Melander & Hussain (Phys. Fluids A, vol. 1(4), 1989, pp. 633–635) are found to have counterparts in the vortex cutting problem, although we also point out numerous differences in the detailed mechanics by which these phases are achieved. Of particular importance in the vortex cutting process is the presence of vorticity generation from the blade surface within the reconnection region and the presence of strong vortex stretching due to the ambient flow about the blade leading edge. A simple exact Navier–Stokes solution is presented that describes the process by which incident vorticity is stretched and carried towards the surface by the ambient flow, and then interacts with and is eventually annihilated by diffusive interaction with vorticity generated at the surface. The model combines a Hiemenz straining flow, a Burgers vortex sheet and a Stokes first problem boundary layer, resulting in a nonlinear ordinary differential equation and a partial differential equation in two scaled time and distance variables that must be solved numerically. The simple model predictions exhibit qualitative agreement with the full numerical simulation results for vorticity annihilation near the leading-edge stagnation point during vortex cutting.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3