On high-frequency sound generated by gust–aerofoil interaction in shear flow

Author:

Ayton Lorna J.,Peake N.

Abstract

AbstractA theoretical model is constructed to predict the far-field sound generated by high-frequency gust–aerofoil interaction in steady parallel shear flow, including the effects of aerofoil thickness. Our approach is to use asymptotic analysis of the Euler equations linearised about steady parallel shear flow, in the limits of high frequency and small, but non-zero, aerofoil thickness and Mach number. The analysis splits the flow into various regions around the aerofoil; local inner regions around the leading and the trailing edges where sound is generated and scattered; a surface transition region accounting for the curvature of the aerofoil; a wake transition region downstream of the aerofoil; and an outer region through which the sound propagates to the observer. Solutions are constructed in all regions, and matched using the principle of matched asymptotic expansions to yield the first two terms in the expansion of both the amplitude and the phase of the far-field pressure. Result are computed for the particular case of scattering of a gust by a symmetric Joukowski aerofoil placed in symmetric Gaussian parallel shear flow. The introduction of mean shear is shown to have a significant effect on the far-field directivity and on the total radiated power.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles

2. Application of a Nonlinear Computational Aeroacoustics Code to the Gust-Airfoil Problem

3. Incompressible Aerodynamics

4. Mengle, V. G. , Stoker, R. W. , Brusniak, L. , Elkoby, R.  & Thomas, R. H. 2007 Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles. In 13th AIAA/CEAS Aeroacoustics Conference, 21–23 May, AIAA-2007-3666.

5. High-accuracy large-step explicit Runge–Kutta (HALE-RK) schemes for computational aeroacoustics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3