Unsteady lift for the Wagner problem in the presence of additional leading/trailing edge vortices

Author:

Li Juan,Wu Zi-Niu

Abstract

This study amends the inviscid Wagner lift model for starting flow at relatively large angles of attack to account for the influence of additional leading edge and trailing edge vortices. Two methods are provided for starting flow of a flat plate. The first method is a modified Wagner function, which assumes a planar trajectory of the trailing edge vortex sheet accounting for a temporal offset from the original Wagner function given release of leading edge vortices and a concentrated starting point vortex at the initiation of motion. The second method idealizes the trailing edge sheet as a series of discrete vortices released sequentially. The models presented are shown to be in good agreement with high-fidelity simulations. Through the present theory, a vortex force line map is generated, which clearly indicates lift enhancing and reducing directions and, when coupled with streamlines, allows one to qualitatively interpret the effect of the sign and position of vortices on the lift and to identify the origins of lift oscillations and peaks. It is concluded that leading edge vortices close to the leading edge elevate the Wagner lift curve while a strong leading edge vortex convected to the trailing edge is detrimental to lift production by inducing a strong trailing edge vortex moving in the lift reducing direction. The vortex force line map can be employed to understand the effect of the different vortices in other situations and may be used to improve vortex control to enhance or reduce the lift.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3