The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up

Author:

Pujara Nimish,Liu Philip L.-F.,Yeh Harry

Abstract

The swash of solitary waves on a plane beach is studied using large-scale experiments. Ten wave cases are examined which range from non-breaking waves to plunging breakers. The focus of this study is on the influence of breaker type on flow evolution, spatiotemporal variations of bed shear stresses and run-up. Measurements are made of the local water depths, flow velocities and bed shear stresses (using a shear plate sensor) at various locations in the swash zone. The bed shear stress is significant near the tip of the swash during uprush and in the shallow flow during the later stages of downrush. In between, the flow evolution is dominated by gravity and follows an explicit solution to the nonlinear shallow water equations, i.e. the flow due to a dam break on a slope. The controlling scale of the flow evolution is the initial velocity of the shoreline immediately following waveform collapse, which can be predicted by measurements of wave height prior to breaking, but also shows an additional dependence on breaker type. The maximum onshore-directed bed shear stress increases significantly onshore of the stillwater shoreline for non-breaking waves and onshore of the waveform collapse point for breaking waves. A new normalization for the bed shear stress which uses the initial shoreline velocity is presented. Under this normalization, the variation of the maximum magnitudes of the bed shear stress with distance along the beach, which is normalized using the run-up, follows the same trend for different breaker types. For the uprush, the maximum dimensionless bed shear stress is approximately 0.01, whereas for the downrush, it is approximately 0.002.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3