Stability of a moving radial liquid sheet: experiments

Author:

Paramati Manjula,Tirumkudulu Mahesh S.ORCID,Schmid Peter J.

Abstract

A recent theory (Tirumkudulu & Paramati, Phys. Fluids, vol. 25, 2013, 102107) for a radially expanding liquid sheet, that accounts for liquid inertia, interfacial tension and thinning of the liquid sheet while ignoring the inertia of the surrounding gas and viscous effects, shows that such a sheet is convectively unstable to small sinuous disturbances at all frequencies and Weber numbers $(We\equiv {\it\rho}_{l}U^{2}h/{\it\sigma})$. Here, ${\it\rho}_{l}$ and ${\it\sigma}$ are the density and surface tension of the liquid, respectively, $U$ is the speed of the liquid jet, and $h$ is the local sheet thickness. In this study we use a simple non-contact optical technique based on laser-induced fluorescence (LIF) to measure the instantaneous local sheet thickness and displacement of a circular sheet produced by head-on impingement of two laminar jets. When the impingement point is disturbed via acoustic forcing, sinuous waves produced close to the impingement point travel radially outwards. The phase speed of the sinuous wave decreases while the amplitude grows as they propagate radially outwards. Our experimental technique was unable to detect thickness modulations in the presence of forcing, suggesting that the modulations could be smaller than the resolution of our experimental technique. The measured phase speed of the sinuous wave envelope matches with theoretical predictions while there is a qualitative agreement in the case of spatial growth. We show that there is a range of frequencies over which the sheet is unstable due to both aerodynamic interaction and thinning effects, while outside this range, thinning effects dominate. These results imply that a full theory that describes the dynamics of a radially expanding liquid sheet should account for both effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3