Author:
Rabey P. K.,Wynn A.,Buxton O. R. H.
Abstract
AbstractThis paper examines the kinematic behaviour of the reduced velocity gradient tensor (VGT),$\tilde{\unicode[STIX]{x1D608}}_{ij}$, which is defined as a$2\times 2$block, from a single interrogation plane, of the full VGT$\unicode[STIX]{x1D608}_{ij}=\partial u_{i}/\partial x_{j}$. Direct numerical simulation data from the fully developed turbulent region of a nominally two-dimensional mixing layer are used in order to examine the extent to which information on the full VGT can be derived from the reduced VGT. It is shown that the reduced VGT is able to reveal significantly more information about regions of the flow in which strain rate is dominant over rotation. It is thus possible to use the assumptions of homogeneity and isotropy to place bounds on the first two statistical moments (and their covariance) of the eigenvalues of the reduced strain-rate tensor (the symmetric part of the reduced VGT) which in turn relate to the turbulent strain rates. These bounds are shown to be dependent upon the kurtosis of$\partial u_{1}/\partial x_{1}$and another variable defined from the constituents of the reduced VGT. The kurtosis is observed to be minimised on the centreline of the mixing layer and thus tighter bounds are possible at the centre of the mixing layer than at the periphery. Nevertheless, these bounds are observed to hold for the entirety of the mixing layer, despite departures from local isotropy. The interrogation plane from which the reduced VGT is formed is observed not to affect the joint probability density functions (p.d.f.s) between the strain-rate eigenvalues and the reduced strain-rate eigenvalues despite the fact that this shear flow has a significant mean shear in the cross-stream direction. Further, it is found that the projection of the eigenframe of the strain-rate tensor onto the interrogation plane of the reduced VGT is also independent of the plane that is chosen, validating the approach of bounding the full VGT using the assumption of local isotropy.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献